Copied to
clipboard

?

G = C5×C22.56C24order 320 = 26·5

Direct product of C5 and C22.56C24

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C22.56C24, C10.1232- (1+4), C10.1712+ (1+4), C4⋊D418C10, C22⋊Q819C10, C4.4D416C10, C42.54(C2×C10), C42.C211C10, (C2×C20).683C23, (C4×C20).295C22, (C2×C10).382C24, (D4×C10).224C22, C22.D414C10, C23.25(C22×C10), C22.56(C23×C10), (Q8×C10).187C22, C2.15(C5×2- (1+4)), C2.23(C5×2+ (1+4)), (C22×C10).108C23, (C22×C20).462C22, (C5×C4⋊D4)⋊45C2, C4⋊C4.34(C2×C10), (C5×C22⋊Q8)⋊46C2, (C2×D4).37(C2×C10), (C5×C4.4D4)⋊36C2, C22⋊C4.7(C2×C10), (C2×Q8).30(C2×C10), (C5×C42.C2)⋊28C2, (C5×C4⋊C4).251C22, (C22×C4).73(C2×C10), (C2×C4).42(C22×C10), (C5×C22.D4)⋊33C2, (C5×C22⋊C4).92C22, SmallGroup(320,1564)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C22.56C24
C1C2C22C2×C10C22×C10D4×C10C5×C4.4D4 — C5×C22.56C24
C1C22 — C5×C22.56C24
C1C2×C10 — C5×C22.56C24

Subgroups: 362 in 220 conjugacy classes, 142 normal (14 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×11], C22, C22 [×12], C5, C2×C4, C2×C4 [×10], C2×C4 [×4], D4 [×6], Q8 [×2], C23 [×4], C10, C10 [×2], C10 [×4], C42, C22⋊C4 [×12], C4⋊C4 [×10], C22×C4 [×4], C2×D4 [×6], C2×Q8 [×2], C20 [×11], C2×C10, C2×C10 [×12], C4⋊D4 [×4], C22⋊Q8 [×4], C22.D4 [×4], C4.4D4 [×2], C42.C2, C2×C20, C2×C20 [×10], C2×C20 [×4], C5×D4 [×6], C5×Q8 [×2], C22×C10 [×4], C22.56C24, C4×C20, C5×C22⋊C4 [×12], C5×C4⋊C4 [×10], C22×C20 [×4], D4×C10 [×6], Q8×C10 [×2], C5×C4⋊D4 [×4], C5×C22⋊Q8 [×4], C5×C22.D4 [×4], C5×C4.4D4 [×2], C5×C42.C2, C5×C22.56C24

Quotients:
C1, C2 [×15], C22 [×35], C5, C23 [×15], C10 [×15], C24, C2×C10 [×35], 2+ (1+4) [×2], 2- (1+4), C22×C10 [×15], C22.56C24, C23×C10, C5×2+ (1+4) [×2], C5×2- (1+4), C5×C22.56C24

Generators and relations
 G = < a,b,c,d,e,f,g | a5=b2=c2=d2=e2=g2=1, f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=bd=db, geg=be=eb, bf=fb, bg=gb, fdf-1=cd=dc, ce=ec, cf=fc, cg=gc, gdg=bcd, fef-1=bce, fg=gf >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 156)(12 157)(13 158)(14 159)(15 160)(21 31)(22 32)(23 33)(24 34)(25 35)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)(76 86)(77 87)(78 88)(79 89)(80 90)(81 91)(82 92)(83 93)(84 94)(85 95)(96 106)(97 107)(98 108)(99 109)(100 110)(101 111)(102 112)(103 113)(104 114)(105 115)(116 126)(117 127)(118 128)(119 129)(120 130)(121 131)(122 132)(123 133)(124 134)(125 135)(136 146)(137 147)(138 148)(139 149)(140 150)(141 151)(142 152)(143 153)(144 154)(145 155)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 156)(7 157)(8 158)(9 159)(10 160)(11 16)(12 17)(13 18)(14 19)(15 20)(26 31)(27 32)(28 33)(29 34)(30 35)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 61)(57 62)(58 63)(59 64)(60 65)(66 71)(67 72)(68 73)(69 74)(70 75)(76 81)(77 82)(78 83)(79 84)(80 85)(86 91)(87 92)(88 93)(89 94)(90 95)(96 101)(97 102)(98 103)(99 104)(100 105)(106 111)(107 112)(108 113)(109 114)(110 115)(116 121)(117 122)(118 123)(119 124)(120 125)(126 131)(127 132)(128 133)(129 134)(130 135)(136 141)(137 142)(138 143)(139 144)(140 145)(146 151)(147 152)(148 153)(149 154)(150 155)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 81)(7 82)(8 83)(9 84)(10 85)(11 86)(12 87)(13 88)(14 89)(15 90)(16 91)(17 92)(18 93)(19 94)(20 95)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 131)(7 132)(8 133)(9 134)(10 135)(11 116)(12 117)(13 118)(14 119)(15 120)(16 121)(17 122)(18 123)(19 124)(20 125)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(51 91)(52 92)(53 93)(54 94)(55 95)(96 146)(97 147)(98 148)(99 149)(100 150)(101 151)(102 152)(103 153)(104 154)(105 155)(106 136)(107 137)(108 138)(109 139)(110 140)(111 141)(112 142)(113 143)(114 144)(115 145)(126 156)(127 157)(128 158)(129 159)(130 160)
(1 46 26 36)(2 47 27 37)(3 48 28 38)(4 49 29 39)(5 50 30 40)(6 151 16 141)(7 152 17 142)(8 153 18 143)(9 154 19 144)(10 155 20 145)(11 136 156 146)(12 137 157 147)(13 138 158 148)(14 139 159 149)(15 140 160 150)(21 51 31 41)(22 52 32 42)(23 53 33 43)(24 54 34 44)(25 55 35 45)(56 81 66 91)(57 82 67 92)(58 83 68 93)(59 84 69 94)(60 85 70 95)(61 76 71 86)(62 77 72 87)(63 78 73 88)(64 79 74 89)(65 80 75 90)(96 131 106 121)(97 132 107 122)(98 133 108 123)(99 134 109 124)(100 135 110 125)(101 126 111 116)(102 127 112 117)(103 128 113 118)(104 129 114 119)(105 130 115 120)
(6 156)(7 157)(8 158)(9 159)(10 160)(11 16)(12 17)(13 18)(14 19)(15 20)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)(76 86)(77 87)(78 88)(79 89)(80 90)(81 91)(82 92)(83 93)(84 94)(85 95)(96 111)(97 112)(98 113)(99 114)(100 115)(101 106)(102 107)(103 108)(104 109)(105 110)(116 131)(117 132)(118 133)(119 134)(120 135)(121 126)(122 127)(123 128)(124 129)(125 130)(136 141)(137 142)(138 143)(139 144)(140 145)(146 151)(147 152)(148 153)(149 154)(150 155)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)(76,86)(77,87)(78,88)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(96,106)(97,107)(98,108)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(116,126)(117,127)(118,128)(119,129)(120,130)(121,131)(122,132)(123,133)(124,134)(125,135)(136,146)(137,147)(138,148)(139,149)(140,150)(141,151)(142,152)(143,153)(144,154)(145,155), (1,21)(2,22)(3,23)(4,24)(5,25)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75)(76,81)(77,82)(78,83)(79,84)(80,85)(86,91)(87,92)(88,93)(89,94)(90,95)(96,101)(97,102)(98,103)(99,104)(100,105)(106,111)(107,112)(108,113)(109,114)(110,115)(116,121)(117,122)(118,123)(119,124)(120,125)(126,131)(127,132)(128,133)(129,134)(130,135)(136,141)(137,142)(138,143)(139,144)(140,145)(146,151)(147,152)(148,153)(149,154)(150,155), (1,96)(2,97)(3,98)(4,99)(5,100)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,92)(18,93)(19,94)(20,95)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,56)(2,57)(3,58)(4,59)(5,60)(6,131)(7,132)(8,133)(9,134)(10,135)(11,116)(12,117)(13,118)(14,119)(15,120)(16,121)(17,122)(18,123)(19,124)(20,125)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(96,146)(97,147)(98,148)(99,149)(100,150)(101,151)(102,152)(103,153)(104,154)(105,155)(106,136)(107,137)(108,138)(109,139)(110,140)(111,141)(112,142)(113,143)(114,144)(115,145)(126,156)(127,157)(128,158)(129,159)(130,160), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,81,66,91)(57,82,67,92)(58,83,68,93)(59,84,69,94)(60,85,70,95)(61,76,71,86)(62,77,72,87)(63,78,73,88)(64,79,74,89)(65,80,75,90)(96,131,106,121)(97,132,107,122)(98,133,108,123)(99,134,109,124)(100,135,110,125)(101,126,111,116)(102,127,112,117)(103,128,113,118)(104,129,114,119)(105,130,115,120), (6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)(76,86)(77,87)(78,88)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(96,111)(97,112)(98,113)(99,114)(100,115)(101,106)(102,107)(103,108)(104,109)(105,110)(116,131)(117,132)(118,133)(119,134)(120,135)(121,126)(122,127)(123,128)(124,129)(125,130)(136,141)(137,142)(138,143)(139,144)(140,145)(146,151)(147,152)(148,153)(149,154)(150,155)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)(76,86)(77,87)(78,88)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(96,106)(97,107)(98,108)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(116,126)(117,127)(118,128)(119,129)(120,130)(121,131)(122,132)(123,133)(124,134)(125,135)(136,146)(137,147)(138,148)(139,149)(140,150)(141,151)(142,152)(143,153)(144,154)(145,155), (1,21)(2,22)(3,23)(4,24)(5,25)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75)(76,81)(77,82)(78,83)(79,84)(80,85)(86,91)(87,92)(88,93)(89,94)(90,95)(96,101)(97,102)(98,103)(99,104)(100,105)(106,111)(107,112)(108,113)(109,114)(110,115)(116,121)(117,122)(118,123)(119,124)(120,125)(126,131)(127,132)(128,133)(129,134)(130,135)(136,141)(137,142)(138,143)(139,144)(140,145)(146,151)(147,152)(148,153)(149,154)(150,155), (1,96)(2,97)(3,98)(4,99)(5,100)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,92)(18,93)(19,94)(20,95)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,56)(2,57)(3,58)(4,59)(5,60)(6,131)(7,132)(8,133)(9,134)(10,135)(11,116)(12,117)(13,118)(14,119)(15,120)(16,121)(17,122)(18,123)(19,124)(20,125)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(96,146)(97,147)(98,148)(99,149)(100,150)(101,151)(102,152)(103,153)(104,154)(105,155)(106,136)(107,137)(108,138)(109,139)(110,140)(111,141)(112,142)(113,143)(114,144)(115,145)(126,156)(127,157)(128,158)(129,159)(130,160), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,81,66,91)(57,82,67,92)(58,83,68,93)(59,84,69,94)(60,85,70,95)(61,76,71,86)(62,77,72,87)(63,78,73,88)(64,79,74,89)(65,80,75,90)(96,131,106,121)(97,132,107,122)(98,133,108,123)(99,134,109,124)(100,135,110,125)(101,126,111,116)(102,127,112,117)(103,128,113,118)(104,129,114,119)(105,130,115,120), (6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)(76,86)(77,87)(78,88)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(96,111)(97,112)(98,113)(99,114)(100,115)(101,106)(102,107)(103,108)(104,109)(105,110)(116,131)(117,132)(118,133)(119,134)(120,135)(121,126)(122,127)(123,128)(124,129)(125,130)(136,141)(137,142)(138,143)(139,144)(140,145)(146,151)(147,152)(148,153)(149,154)(150,155) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,156),(12,157),(13,158),(14,159),(15,160),(21,31),(22,32),(23,33),(24,34),(25,35),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75),(76,86),(77,87),(78,88),(79,89),(80,90),(81,91),(82,92),(83,93),(84,94),(85,95),(96,106),(97,107),(98,108),(99,109),(100,110),(101,111),(102,112),(103,113),(104,114),(105,115),(116,126),(117,127),(118,128),(119,129),(120,130),(121,131),(122,132),(123,133),(124,134),(125,135),(136,146),(137,147),(138,148),(139,149),(140,150),(141,151),(142,152),(143,153),(144,154),(145,155)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,156),(7,157),(8,158),(9,159),(10,160),(11,16),(12,17),(13,18),(14,19),(15,20),(26,31),(27,32),(28,33),(29,34),(30,35),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,61),(57,62),(58,63),(59,64),(60,65),(66,71),(67,72),(68,73),(69,74),(70,75),(76,81),(77,82),(78,83),(79,84),(80,85),(86,91),(87,92),(88,93),(89,94),(90,95),(96,101),(97,102),(98,103),(99,104),(100,105),(106,111),(107,112),(108,113),(109,114),(110,115),(116,121),(117,122),(118,123),(119,124),(120,125),(126,131),(127,132),(128,133),(129,134),(130,135),(136,141),(137,142),(138,143),(139,144),(140,145),(146,151),(147,152),(148,153),(149,154),(150,155)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,81),(7,82),(8,83),(9,84),(10,85),(11,86),(12,87),(13,88),(14,89),(15,90),(16,91),(17,92),(18,93),(19,94),(20,95),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,131),(7,132),(8,133),(9,134),(10,135),(11,116),(12,117),(13,118),(14,119),(15,120),(16,121),(17,122),(18,123),(19,124),(20,125),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(51,91),(52,92),(53,93),(54,94),(55,95),(96,146),(97,147),(98,148),(99,149),(100,150),(101,151),(102,152),(103,153),(104,154),(105,155),(106,136),(107,137),(108,138),(109,139),(110,140),(111,141),(112,142),(113,143),(114,144),(115,145),(126,156),(127,157),(128,158),(129,159),(130,160)], [(1,46,26,36),(2,47,27,37),(3,48,28,38),(4,49,29,39),(5,50,30,40),(6,151,16,141),(7,152,17,142),(8,153,18,143),(9,154,19,144),(10,155,20,145),(11,136,156,146),(12,137,157,147),(13,138,158,148),(14,139,159,149),(15,140,160,150),(21,51,31,41),(22,52,32,42),(23,53,33,43),(24,54,34,44),(25,55,35,45),(56,81,66,91),(57,82,67,92),(58,83,68,93),(59,84,69,94),(60,85,70,95),(61,76,71,86),(62,77,72,87),(63,78,73,88),(64,79,74,89),(65,80,75,90),(96,131,106,121),(97,132,107,122),(98,133,108,123),(99,134,109,124),(100,135,110,125),(101,126,111,116),(102,127,112,117),(103,128,113,118),(104,129,114,119),(105,130,115,120)], [(6,156),(7,157),(8,158),(9,159),(10,160),(11,16),(12,17),(13,18),(14,19),(15,20),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75),(76,86),(77,87),(78,88),(79,89),(80,90),(81,91),(82,92),(83,93),(84,94),(85,95),(96,111),(97,112),(98,113),(99,114),(100,115),(101,106),(102,107),(103,108),(104,109),(105,110),(116,131),(117,132),(118,133),(119,134),(120,135),(121,126),(122,127),(123,128),(124,129),(125,130),(136,141),(137,142),(138,143),(139,144),(140,145),(146,151),(147,152),(148,153),(149,154),(150,155)])

Matrix representation G ⊆ GL8(𝔽41)

160000000
016000000
001600000
000160000
000010000
000001000
000000100
000000010
,
400000000
040000000
004000000
000400000
000040000
000004000
000000400
000000040
,
400000000
040000000
004000000
000400000
00001000
00000100
00000010
00000001
,
2823000000
2313000000
23013180000
02318280000
00002038321
00003202138
00000402138
0000400321
,
013900000
100390000
000400000
004000000
000001400
000010040
000000040
000000400
,
01000000
400000000
400010000
014000000
00000100
000040000
000000040
00000010
,
10000000
01000000
014000000
100400000
00001000
00000100
000002400
000020040

G:=sub<GL(8,GF(41))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[28,23,23,0,0,0,0,0,23,13,0,23,0,0,0,0,0,0,13,18,0,0,0,0,0,0,18,28,0,0,0,0,0,0,0,0,20,3,0,40,0,0,0,0,38,20,40,0,0,0,0,0,3,21,21,3,0,0,0,0,21,38,38,21],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,39,0,0,40,0,0,0,0,0,39,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,40,0,0,0,0,0,40,40,0],[0,40,40,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0],[1,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,1,2,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40] >;

95 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4K5A5B5C5D10A···10L10M···10AB20A···20AR
order122222224···4555510···1010···1020···20
size111144444···411111···14···44···4

95 irreducible representations

dim1111111111114444
type+++++++-
imageC1C2C2C2C2C2C5C10C10C10C10C102+ (1+4)2- (1+4)C5×2+ (1+4)C5×2- (1+4)
kernelC5×C22.56C24C5×C4⋊D4C5×C22⋊Q8C5×C22.D4C5×C4.4D4C5×C42.C2C22.56C24C4⋊D4C22⋊Q8C22.D4C4.4D4C42.C2C10C10C2C2
# reps1444214161616842184

In GAP, Magma, Sage, TeX

C_5\times C_2^2._{56}C_2^4
% in TeX

G:=Group("C5xC2^2.56C2^4");
// GroupNames label

G:=SmallGroup(320,1564);
// by ID

G=gap.SmallGroup(320,1564);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,2571,436,6947,1242]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=e^2=g^2=1,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=b*d=d*b,g*e*g=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f^-1=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=b*c*d,f*e*f^-1=b*c*e,f*g=g*f>;
// generators/relations

׿
×
𝔽